20,640 research outputs found

    Computing maximum cliques in B2B_2-EPG graphs

    Full text link
    EPG graphs, introduced by Golumbic et al. in 2009, are edge-intersection graphs of paths on an orthogonal grid. The class BkB_k-EPG is the subclass of EPG graphs where the path on the grid associated to each vertex has at most kk bends. Epstein et al. showed in 2013 that computing a maximum clique in B1B_1-EPG graphs is polynomial. As remarked in [Heldt et al., 2014], when the number of bends is at least 44, the class contains 22-interval graphs for which computing a maximum clique is an NP-hard problem. The complexity status of the Maximum Clique problem remains open for B2B_2 and B3B_3-EPG graphs. In this paper, we show that we can compute a maximum clique in polynomial time in B2B_2-EPG graphs given a representation of the graph. Moreover, we show that a simple counting argument provides a 2(k+1){2(k+1)}-approximation for the coloring problem on BkB_k-EPG graphs without knowing the representation of the graph. It generalizes a result of [Epstein et al, 2013] on B1B_1-EPG graphs (where the representation was needed)

    Polarization and readout of coupled single spins in diamond

    Get PDF
    We study the coupling of a single nitrogen-vacancy center in diamond to a nearby single nitrogen defect at room temperature. The magnetic dipolar coupling leads to a splitting in the electron spin resonance frequency of the nitrogen-vacancy center, allowing readout of the state of a single nitrogen electron spin. At magnetic fields where the spin splitting of the two centers is the same we observe a strong polarization of the nitrogen electron spin. The amount of polarization can be controlled by the optical excitation power. We combine the polarization and the readout in time-resolved pump-probe measurements to determine the spin relaxation time of a single nitrogen electron spin. Finally, we discuss indications for hyperfine-induced polarization of the nitrogen nuclear spin

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    Oesophageal ulceration in HIV-infected patients

    Get PDF
    Objective. To determine the aetiology of oesophageal ulceration in HIV-infected patients. Design. A retrospective clinical, endoscopic and histopathological analysis of patients with confirmed HIV infection and an oesophageal ulcer diagnosed on endoscopy. Setting. A tertiary referral, gastrointestinal clinic in Cape Town. Results. Fifty-one patients with HIV infection and oesophageal ulceration were seen from January 2001 to December 2007. Median CD4 count was 26 cells/µl. Mean age was 35.5 years. Sixty per cent of patients were female. Forty-nine per cent of oesophageal ulcers were idiopathic while 23% were caused by cytomegalovirus infection. The remainder were due to miscellaneous causes. Conclusion. A surprisingly small number of patients with HIV associated oesophageal ulceration were seen during the study period. This may reflect local referral practices or the fact that patients with severe immunosuppression succumb before developing oesophageal ulcers. As in other series, idiopathic oesophageal ulcers and cytomegalovirus ulcers made up the majority of cases. Correct biopsy technique and appropriate histological and microbiological investigations are associated with improved diagnostic yield in these patients

    Factors Affecting the Corporate Decision-Making Process of Air Transport Manufacturers

    Get PDF
    Fuel economy is a pivotal question influencing the future sale and utilization of commercial aircraft. The NASA Aircraft Energy Efficiency (ACEE) Program Office has a program intended to accelerate the readiness of advanced technologies for energy efficient aircraft. Because the decision to develop a new airframe or engine is a major financial hazard for manufacturers, it is important to know what factors influence the decision making process. A method is described for identifying and ranking individuals and organizations involved at each stage of commercial air transport development, and the barriers that must be overcome in adopting new technologies

    Author\u27s Reply—Is it really COVID-19?

    Get PDF

    Causal perturbation theory in terms of retarded products, and a proof of the Action Ward Identity

    Full text link
    In the framework of perturbative algebraic quantum field theory a local construction of interacting fields in terms of retarded products is performed, based on earlier work of Steinmann. In our formalism the entries of the retarded products are local functionals of the off shell classical fields, and we prove that the interacting fields depend only on the action and not on terms in the Lagrangian which are total derivatives, thus providing a proof of Stora's 'Action Ward Identity'. The theory depends on free parameters which flow under the renormalization group. This flow can be derived in our local framework independently of the infrared behavior, as was first established by Hollands and Wald. We explicitly compute non-trivial examples for the renormalization of the interaction and the field.Comment: 76 pages, to appear in Rev. Math. Phy

    A note on the algebraic growth rate of Poincar\'e series for Kleinian groups

    Full text link
    In this note we employ infinite ergodic theory to derive estimates for the algebraic growth rate of the Poincar\'e series for a Kleinian group at its critical exponent of convergence.Comment: 8 page

    Vacuum polarization around stars: nonlocal approximation

    Full text link
    We compute the vacuum polarization associated with quantum massless fields around stars with spherical symmetry. The nonlocal contribution to the vacuum polarization is dominant in the weak field limit, and induces quantum corrections to the exterior metric that depend on the inner structure of the star. It also violates the null energy conditions. We argue that similar results also hold in the low energy limit of quantum gravity. Previous calculations of the vacuum polarization in spherically symmetric spacetimes, based on local approximations, are not adequate for newtonian stars.Comment: 8 pages, no figure

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore